Übungssoftware

Übungssoftware Powertraining Noten lernen

mehr Informationen ...

eBook Harmonielehre

eBook Harmonielehre

mehr Informationen ...

eBook Rhythmik

eBook Rhythmik

mehr Informationen ...

Die Vierklangsumkehrungen

Bewertung: 4 / 5

Stern aktivStern aktivStern aktivStern aktivStern inaktiv
 

Wie bei den Dreiklängen können wir auch die Vierklänge umkehren (s. Die Dreiklangsumkehrungen). Der Vierklang hat einen Ton mehr, somit ergibt sich auch eine Umkehrung mehr. Das Schema zum Erarbeiten der Umkehrungen ist das gleiche, der jeweils unterste Ton wird oktaviert, um die nächste Umkehrung zu erhalten.

Hier die Notendarstellung der vier Vierklangs-Grundtypen:

Die Vierklangsgrundtypen und ihre Umkehrungen

Da ein Vierklang in der Grundstellung in Terzschichtung aufgebaut ist, lässt sich die Grundstellung schon anhand des Notenbildes sehr leicht erkennen. Will man eine Umkehrung erkennen, so empfiehlt sich, zuerst die "Notentraube" nach einem Halb- oder Ganztonschritt zu untersuchen. Der obere Ton des gefundenen Halb- bzw. Ganztonschrittes ist dann der Grundton des Akkordes. Indem man die Noten in der Traube von oben bis zu diesem Ton zählt, erhält man die Umkehrung.

Bestimmung der Umkehrung eines Vierklangs

Das ist vielleicht etwas ungewöhnlich erklärt, sicher nicht den Lehrbüchern entsprechend, aber meiner Meinung nach sehr hilfreich.

Nicht vergessen, es gibt auch noch andere Akkorde, die hier noch nicht behandelt wurden. Wichtig ist genau hinzusehen und den Akkord auf Terzen zu analysieren. Nur so kannst Du sicher stellen, dass auch wirklich einer der Vierklangs-Grundtypen vorliegt.

Die weniger gebräuchlichen Vierklangstypen o7 (Grundstellung), m maj7 (Moll-Major-7) und maj7/#5 habe ich an dieser Stelle nicht behandelt, es funktioniert analog wie oben beschrieben, nur die Terzstruktur der Akkorde ist vielleicht etwas ungewohnt, deshalb besonders gut aufpassen.

Der Aufbau von Vierklangsumkehrungen

Eine typische Prüfungsfrage könnte lauten: Schreibe den Vierklang Ab maj7 in der 3. Umkehrung.

Hier kann man ganz schön viel falsch machen, deswegen solltest Du dir dieses Schema gut einprägen. Zuerst solltest Du dir klarmachen, wie die Grundstellung des Vierklangs aufgebaut ist, welche Terzen (groß/klein) geschichtet werden und letztendlich, wie die Töne heißen (s. Die Vierklänge).

Beispiel : Ab maj7 in der 3. Umkehrung

  • Schritt 1: Schreibe den Grundton Ab
  • Schritt 2: Schreibe die große Terz C
  • Schritt 3: Schreibe die Quinte Eb.
    Jetzt ist der dritte Ton erreicht, da die 3. Umkehrung gefordert ist, schreibe nun die nächste Note eine Oktave tiefer.
  • Schritt 4: Schreibe die Septime G eine Oktave tiefer, also unterhalb des Grundtons.

Beispiel 1: Ab maj7 in der 3. Umkehrung

Beispiel 2: D m7/b5 in der 2. Umkehrung

  • Schritt 1: Schreibe den Grundton D
  • Schritt 2: Schreibe die kleine Terz F.
    Jetzt ist der zweite Ton erreicht, da die 2. Umkehrung gefordert ist, schreibe nun die nächsten Noten eine Oktave tiefer.
  • Schritt 3: Schreibe die Quinte Ab eine Oktave tiefer, also unterhalb des Grundtons.
  • Schritt 4: Schreibe die Septime C eine Oktave tiefer, also unterhalb des Grundtons.

Beispiel 2: D m7/b5 in der 2. Umkehrung

Beispiel 3: E m7 in der 1. Umkehrung

  • Schritt 1: Schreibe den Grundton E.
    Jetzt ist der erste Ton erreicht, da die 1. Umkehrung gefordert ist, schreibe nun die nächsten Noten eine Oktave tiefer.
  • Schritt 2: Schreibe die kleine Terz G eine Oktave tiefer, also unterhalb des Grundtons
  • Schritt 3: Schreibe die Quinte H eine Oktave tiefer, also unterhalb des Grundtons
  • Schritt 4: Schreibe die Septime D eine Oktave tiefer, also unterhalb des Grundtons.

Beispiel 3: E m7 in der 1. Umkehrung

Die Lagen der Vierklangsumkehrungen

Wie bei den Dreiklängen können auch die Vierklangsumkehrungen in Lagen ausgedrückt werden. Dabei gibt der oberste Ton des Vierklangs die Lage an, genauer gesagt die Bedeutung des obersten Tons im Vierklang.

Die Lagen der Vierklangsumkehrungen

Nochmal konkret am gezeigten Beispiel C maj7:

  • In der Grundstellung ist die Septime H der oberste Ton, der Vierklang steht in der Septlage.
  • In der 1. Umkehrung ist die Oktave des Grundtons C der oberste Ton, der Vierklang steht in der Oktavlage.
  • In der 2. Umkehrung ist die Terz E der oberste Ton, der Vierklang steht in der Terzlage.
  • In der 3. Umkehrung ist die Quinte G der oberste Ton, der Vierklang steht in der Quintlage.

Es ist eigentlich sehr einfach, Du solltest es idealerweise am Klavier nachvollziehen. Da liegen die Töne schön nebeneinander und die Strukturen der Akkorde lassen sich so leichter verstehen.

Drucken E-Mail

Wer ist online?

Aktuell sind 119 Gäste und keine Mitglieder online

Neue Glossareinträge

Besuchermeinungen

Ich finde diese Seite wirklich genial und möchte mich dafür ganz herzlich bedanken. Ich finde hier, was ich noch nie vorher verstanden habe. Auch die Übungen finde ich große Klasse. Super!

Tolle Seite! Hat mir schon viel geholfen. Ich hoffe, dass ich dadurch meine Prüfung zum Chorleiter schaffe.

Ich finde, dass der Stoff toll erklärt wird. Viel besser als in unserem Musikunterricht. Ich habe die Tonarten hier besser verstanden.

Du hast hier wirklich eine wunderbar einfache und logische Seite geschaffen, um einen komplexen Themenbereich anschaulich zu erklären! Super!

Ich bin absolut begeistert von der Harmonielehre! Toll finde ich vor allem die vielen Übungen. Hat mich wirklich weiter gebracht.

Meine Tochter hat dringend Hilfe für den Musikuntericht gebraucht (Quintenzirkel). Und siehe da, ich habe die Tonarten nach 30 Jahren jetzt endlich kapiert.

Eine super Seite! Alles sehr gut verständlich und die Texte dazu sind auch sehr erbaulich. Mir hat es auf jeden Fall geholfen und ich bin echt begeistert! Weiter so!

Das ist die beste Seite im Internet zum Thema Harmonielehre. Dass Lösungen zur direkten Selbstkontrolle mit angeboten werden ist sensationell!

Weitermachen nicht aufhören. Die Seite ist spitze und einzigartig im Internet.

Danke das Du sowas Gutes eingerichtet hast das für Jedermann zugänglich sein kann!

Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden.
Weitere Informationen Ok Ablehnen