musicians-place.de Logo

Kurse für Harmonielehre, Gehörbildung und Rhythmik

Die Vierklangsumkehrungen

Wie bei den Dreiklängen können wir auch die Vierklänge umkehren (s. Die Dreiklangsumkehrungen). Der Vierklang hat einen Ton mehr, somit ergibt sich auch eine Umkehrung mehr. Das Schema zum Erarbeiten der Umkehrungen ist das gleiche, der jeweils unterste Ton wird oktaviert, um die nächste Umkehrung zu erhalten.

Hier die Notendarstellung der vier Vierklangs-Grundtypen:

Die Vierklangsgrundtypen und ihre Umkehrungen

Da ein Vierklang in der Grundstellung in Terzschichtung aufgebaut ist, lässt sich die Grundstellung schon anhand des Notenbildes sehr leicht erkennen. Will man eine Umkehrung erkennen, so empfiehlt sich, zuerst die "Notentraube" nach einem Halb- oder Ganztonschritt zu untersuchen. Der obere Ton des gefundenen Halb- bzw. Ganztonschrittes ist dann der Grundton des Akkordes. Indem man die Noten in der Traube von oben bis zu diesem Ton zählt, erhält man die Umkehrung.

Bestimmung der Umkehrung eines Vierklangs

Das ist vielleicht etwas ungewöhnlich erklärt, sicher nicht den Lehrbüchern entsprechend, aber meiner Meinung nach sehr hilfreich.

Nicht vergessen, es gibt auch noch andere Akkorde, die hier noch nicht behandelt wurden. Wichtig ist genau hinzusehen und den Akkord auf Terzen zu analysieren. Nur so kannst Du sicher stellen, dass auch wirklich einer der Vierklangs-Grundtypen vorliegt.

Die weniger gebräuchlichen Vierklangstypen o7 (Grundstellung), m maj7 (Moll-Major-7) und maj7/#5 habe ich an dieser Stelle nicht behandelt, es funktioniert analog wie oben beschrieben, nur die Terzstruktur der Akkorde ist vielleicht etwas ungewohnt, deshalb besonders gut aufpassen.

Der Aufbau von Vierklangsumkehrungen

Eine typische Prüfungsfrage könnte lauten: Schreibe den Vierklang Ab maj7 in der 3. Umkehrung.

Hier kann man ganz schön viel falsch machen, deswegen solltest Du dir dieses Schema gut einprägen. Zuerst solltest Du dir klarmachen, wie die Grundstellung des Vierklangs aufgebaut ist, welche Terzen (groß/klein) geschichtet werden und letztendlich, wie die Töne heißen (s. Die Vierklänge).

Beispiel : Ab maj7 in der 3. Umkehrung

  • Schritt 1: Schreibe den Grundton Ab
  • Schritt 2: Schreibe die große Terz C
  • Schritt 3: Schreibe die Quinte Eb.
    Jetzt ist der dritte Ton erreicht, da die 3. Umkehrung gefordert ist, schreibe nun die nächste Note eine Oktave tiefer.
  • Schritt 4: Schreibe die Septime G eine Oktave tiefer, also unterhalb des Grundtons.

Beispiel 1: Ab maj7 in der 3. Umkehrung

Beispiel 2: D m7/b5 in der 2. Umkehrung

  • Schritt 1: Schreibe den Grundton D
  • Schritt 2: Schreibe die kleine Terz F.
    Jetzt ist der zweite Ton erreicht, da die 2. Umkehrung gefordert ist, schreibe nun die nächsten Noten eine Oktave tiefer.
  • Schritt 3: Schreibe die Quinte Ab eine Oktave tiefer, also unterhalb des Grundtons.
  • Schritt 4: Schreibe die Septime C eine Oktave tiefer, also unterhalb des Grundtons.

Beispiel 2: D m7/b5 in der 2. Umkehrung

Beispiel 3: E m7 in der 1. Umkehrung

  • Schritt 1: Schreibe den Grundton E.
    Jetzt ist der erste Ton erreicht, da die 1. Umkehrung gefordert ist, schreibe nun die nächsten Noten eine Oktave tiefer.
  • Schritt 2: Schreibe die kleine Terz G eine Oktave tiefer, also unterhalb des Grundtons
  • Schritt 3: Schreibe die Quinte H eine Oktave tiefer, also unterhalb des Grundtons
  • Schritt 4: Schreibe die Septime D eine Oktave tiefer, also unterhalb des Grundtons.

Beispiel 3: E m7 in der 1. Umkehrung

Die Lagen der Vierklangsumkehrungen

Wie bei den Dreiklängen können auch die Vierklangsumkehrungen in Lagen ausgedrückt werden. Dabei gibt der oberste Ton des Vierklangs die Lage an, genauer gesagt die Bedeutung des obersten Tons im Vierklang.

Die Lagen der Vierklangsumkehrungen

Nochmal konkret am gezeigten Beispiel C maj7:

  • In der Grundstellung ist die Septime H der oberste Ton, der Vierklang steht in der Septlage.
  • In der 1. Umkehrung ist die Oktave des Grundtons C der oberste Ton, der Vierklang steht in der Oktavlage.
  • In der 2. Umkehrung ist die Terz E der oberste Ton, der Vierklang steht in der Terzlage.
  • In der 3. Umkehrung ist die Quinte G der oberste Ton, der Vierklang steht in der Quintlage.

Es ist eigentlich sehr einfach, Du solltest es idealerweise am Klavier nachvollziehen. Da liegen die Töne schön nebeneinander und die Strukturen der Akkorde lassen sich so leichter verstehen.

Wer ist online?

Aktuell sind 157 Gäste und keine Mitglieder online

Besuchermeinungen

  • Die Seite ist sehr gut gemacht und die Texte sind einfach zu verstehen. Insgesamt hat mir die Sei

  • Ich habe einige Bücher zur Harmonielehre gelesen. Aber keines war so einfach und logisch aufgeba

  • Top Seite. Ich kenne keine vergleichbare Übungsseite wie diese. Weiter so!

  • Weiter so! Mit gleichem Humor.

  • Prima, dass sich jemand die Mühe macht solches Wissen zur Verfügung zu stellen!

  • Tolle Seite! Hat mir wirklich weitergeholfen. Jetzt kann ich endlich mal im Proberaum voll auf di

  • Eine super Site, die ich meinen Schülern empfehlen werde!!!

  • Absolut klasse gemacht diese Seite. Perfekt für ein Selbststudium zusammen gestellt, wie ich es

  • Finde ich genial, daß es eine solche Seite im Internet gibt. Ich habe mich bisher geweigert Harm

  • Eine sehr gelungene Seite die genau die Themen behandelt die grad für mein Studium wichtig sind.

  • Meine Tochter hat dringend Hilfe für den Musikuntericht gebraucht (Quintenzirkel). Und siehe da,

  • Also ich kann einfach nur sagen SUPER SEITE!!! Ich will bald Gitarre studieren und finde hier wic

  • Klasse Seite, dank dir bekomme ich keine 6 in Musik. Danke. Mach weiter so.

  • Ein großes Lob für Deine Arbeit!

  • Ich bin sehr dankbar für diese Seite, da ich mir selbst Klavierspielen beibringen möchte. Ist e

  • Du hast hier wirklich eine wunderbar einfache und logische Seite geschaffen, um einen komplexen T

  • Vielen vielen Dank für diese Seite, sie ist mir eine große Hilfe!

  • Tolle Seite! Hat mir schon viel geholfen. Ich hoffe, dass ich dadurch meine Prüfung zum Chorleit

  • Großartige Einführung in die Musiktheorie, vielen Dank dafür und bitte weiter so!

  • Als ich diese Seite entdeckt habe musste ich feststellen, dass ich nie wirklich tiefer mir der Ha

  • Wollte nur mal eben kundtun, dass diese Seite gut strukturiert, komplexe Inhalte anschaulich verm

  • Ich bin glücklich, meine Grundkenntnisse aus der Schule hier auffrischen zu können und alles so

  • Danke, danke, danke, dass es diese Seite gibt! Ich mache gerade eine Ausbildung zum Chorleiter, u

  • Vielen Dank für das Erstellen dieser tollen, für mich sehr hilfreichen Seiten!

  • Habe mir gerade ihre beiden ebooks Harmonielehre und Rhythmik gekauft. Wirklich sehr gut, um wied

    Wir benutzen Cookies

    Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.